Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
2.
Influenza Other Respir Viruses ; 17(5): e13150, 2023 05.
Article in English | MEDLINE | ID: covidwho-20236565

ABSTRACT

There are concerns that sotrovimab has reduced efficacy at reducing hospitalisation risk against the BA.2 sub-lineage of the Omicron SARS-CoV-2 variant. We performed a retrospective cohort (n = 8850) study of individuals treated with sotrovimab in the community, with the objective of assessing whether there were any differences in risk of hospitalisation of BA.2 cases compared with BA.1. We estimated that the hazard ratio of hospital admission with a length of stay of 2 days or more was 1.17 for BA.2 compared with BA.1 (95%CI 0.74-1.86). These results suggest that the risk of hospital admission was similar between the two sub-lineages.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Retrospective Studies , COVID-19/epidemiology , England/epidemiology
3.
Omics Approaches and Technologies in COVID-19 ; : 255-273, 2022.
Article in English | Scopus | ID: covidwho-2300850

ABSTRACT

The COVID-19 pandemic has taken the world by storm, placing healthcare systems around the globe under immense pressure. The exceptional circumstance has made the scientific community turn to artificial intelligence (AI), with hopes that AI techniques can be used in all aspects of combating the pandemic, whether it is in using AI to uncover sequences in the genomic code of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus for the purposes of developing therapeutics, such as antivirals, antibodies, or vaccines, or using AI to provide (near-) instantaneous clinical diagnosis techniques by way of analysis of chest X-ray (CXR) images, computed tomography (CT) scans or other useful modalities, or using AI for as a tool for mass population testing by analyzing patient audio recordings. In this chapter, we survey the AI research literature with respect to applications for COVID-19 and showcase and critique notable state of the art approaches. © 2023 Elsevier Inc. All rights reserved.

4.
Coronaviruses ; 2(11) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2255067

ABSTRACT

Older adults are at a higher risk of developing serious illness and mortality from COVID-19. Among a multitude of factors, cellular senescence associated with ageing, obesity, cardiovascular diseases, and diabetes seems to be statistically correlated with severe SARS-CoV-2 infections and mortality. Surface proteins such as vimentin and CD26 that are differentially ex-pressed on senescent cells seem important for SARS-CoV-2 attachment and internalization. Potential therapeutic agents against this novel virus also exhibit senolytic and anti-inflammatory actions, implicating that their beneficial effects could, in part, be attributed to their senescent cell removal and the associated inflammatory phenotype neutralizing properties. Elucidating the underlying molecular mechanisms that connect cellular senescence and severity of SARS-CoV-2 infection might help direct towards development of effective therapeutics for elderly patients of COVID-19.Copyright © 2021 Bentham Science Publishers.

5.
Otolaryngol Head Neck Surg ; 169(1): 55-61, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2255958

ABSTRACT

OBJECTIVE: A novel COVID-19 therapeutic, nirmatrelvir/ritonavir (Paxlovid), is commonly associated with reports of dysgeusia. The Food and Drug Administration Adverse Event Reporting System (FAERS) database was used to determine the real-world reporting of Paxlovid-associated dysgeusia (PAD), identify associated factors, and describe the relative reporting rates of dysgeusia for Paxlovid compared to other COVID-19 therapeutics (OCT), ritonavir alone, and other protease inhibitors (OPI). STUDY DESIGN: Observational retrospective. SETTING: Tertiary academic medical center. METHODS: We collected patient and adverse event characteristics reported in the FAERS database between January 1968 and September 2022. Disproportionality analyses were used to compare the reporting of PAD to dysgeusia reported for OCT, ritonavir, and OPI. RESULTS: 345,229 adverse events were included in the present study. Dysgeusia was a frequently reported Paxlovid-associated adverse event (17.5%) and was associated with nonserious COVID-19 infection (reporting odds ratio [ROR] 1.4; 95% confidence interval [CI] 1.2, 1.7) and female sex (ROR = 1.7; 95% CI 1.6, 1.9). Paxlovid was more likely to be associated with the reporting of dysgeusia compared to OCT (ROR 305.4; 95% CI 164.1, 568.5), ritonavir (ROR 28.0; 95% CI 24.1, 32.7), and OPI (ROR 49.0; 95% CI 42.8, 56.1). CONCLUSION: Dysgeusia is much more likely to be reported by patients receiving Paxlovid than those receiving OCT, ritonavir alone, or OPI. These findings suggest a potential mechanism of dysgeusia that causes distorted taste out of proportion to the background effects of COVID-19 infection and specific to nirmatrelvir. Future studies are needed to determine the underlying pathophysiology and long-term clinical implications for patients who report dysgeusia with Paxlovid.


Subject(s)
COVID-19 , Ritonavir , Female , Humans , Dysgeusia/chemically induced , Dysgeusia/epidemiology , Pharmacovigilance , Retrospective Studies , United States
6.
Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV2 Infection: Revolutionary Strategies to Combat Pandemics ; : 115-145, 2022.
Article in English | Scopus | ID: covidwho-2149123

ABSTRACT

The novel coronavirus infection (COVID-19) first reported in December 2019, has become serious global life-threatening disease that has created huge health care crises. Despite huge number of clinical trials for drug and vaccine, only few successful candidates are in market, which led to problem of demand and supply. The low- and middle-income countries faces major health crisis due to financial issues. Studies to search plant originated natural bioactive molecules for prophylactic and therapeutic of COVID-19 infection has gained considerable attention, due to their low-cost, easy availability and lesser side effects. Natural products and herbal medicine have long been known for their role in treating respiratory infections and many of them have been approved/under trial as drugs or over-the-counter food additives to lessen the symptoms. It is undisputable fact that herbal/natural molecules’ medicine is still a promising resource and used as precursor for drug discovery to search prospective prophylactic candidate against COVID-19. These bioactive compounds bind with potential therapeutic target of SARS-COV-2 such as ACE II, Spike protein, TMPRESS, RdRp, Main proteases and endoribonuclease and may prevent or at least slow down the SARS-CoV-2 infection. Therefore, several numbers of clinical trials have registered to investigate the potentials of natural product to halt disease progression. The main aim of present chapter is to discuss the potential role of natural molecules which can be used as therapeutic drugs for treatment of COVID-19 and thus helpful to curb down the mortality rate. © 2022 Elsevier Inc. All rights reserved.

7.
Bioorg Med Chem Lett ; 75: 128987, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-2104449

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a communicable disease triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged as leading cause of death from a single infectious agent globally. Despite of rigorous protective measures, availability of multiple vaccines and with few approved therapeutics, the virus effect on the humankind throughout the world is perennial. COVID-19 has become the most urgent health concern with emergence of new challenging variants which outnumbered all other health issues and ensued in overwhelming number of reported deaths. In this unprecedented period of COVID-19 pandemic, scientists work round the clock for rapid development of efficient vaccines for prevention of infection and effective therapeutics for treatment. Here, we report the status of COVID-19 and highlight the ongoing research and development of vaccines and therapeutic strategies. It is necessary to know the present situation and available options to fight against the COVID-19 pandemic.


Subject(s)
COVID-19 , Vaccines , COVID-19/therapy , Humans , Pandemics/prevention & control , SARS-CoV-2
8.
J Clin Med ; 11(20)2022 10 11.
Article in English | MEDLINE | ID: covidwho-2071535

ABSTRACT

Coronavirus disease 2019 (COVID-19) has been shown to be strongly associated with increased risk for venous thromboembolism events (VTE) mainly in the inpatient but also in the outpatient setting. Pharmacologic thromboprophylaxis has been shown to offer significant benefits in terms of reducing not only VTE events but also mortality, especially in acutely ill patients with COVID-19. Although the main source of evidence is derived from observational studies with several limitations, thromboprophylaxis is currently recommended for all hospitalized patients with acceptable bleeding risk by all national and international guidelines. Recently, high quality data from randomized controlled trials (RCTs) further support the role of thromboprophylaxis and provide insights into the optimal thromboprophylaxis strategy. The aim of this statement is to systematically review all the available evidence derived from RCTs regarding thromboprophylaxis strategies in patients with COVID-19 in different settings (either inpatient or outpatient) and provide evidence-based guidance to practical questions in everyday clinical practice. Clinical questions accompanied by practical recommendations are provided based on data derived from 20 RCTs that were identified and included in the present study. Overall, the main conclusions are: (i) thromboprophylaxis should be administered in all hospitalized patients with COVID-19, (ii) an optimal dose of inpatient thromboprophylaxis is dependent upon the severity of COVID-19, (iii) thromboprophylaxis should be administered on an individualized basis in post-discharge patients with COVID-19 with high thrombotic risk, and (iv) thromboprophylaxis should not be routinely administered in outpatients. Changes regarding the dominant SARS-CoV-2 variants, the wide immunization status (increasing rates of vaccination and reinfections), and the availability of antiviral therapies and monoclonal antibodies might affect the characteristics of patients with COVID-19; thus, future studies will inform us about the thrombotic risk and the optimal therapeutic strategies for these patients.

10.
Bioengineered ; 13(5): 12598-12624, 2022 05.
Article in English | MEDLINE | ID: covidwho-1860758

ABSTRACT

Here, we describe the isolation of 18 unique anti SARS-CoV-2 human single-chain antibodies from an antibody library derived from healthy donors. The selection used a combination of phage and yeast display technologies and included counter-selection strategies meant to direct the selection of the receptor-binding motif (RBM) of SARS-CoV-2 spike protein's receptor binding domain (RBD2). Selected antibodies were characterized in various formats including IgG, using flow cytometry, ELISA, high throughput SPR, and fluorescence microscopy. We report antibodies' RBD2 recognition specificity, binding affinity, and epitope diversity, as well as ability to block RBD2 binding to the human receptor angiotensin-converting enzyme 2 (ACE2) and to neutralize authentic SARS-CoV-2 virus infection in vitro. We present evidence supporting that: 1) most of our antibodies (16 out of 18) selectively recognize RBD2; 2) the best performing 8 antibodies target eight different epitopes of RBD2; 3) one of the pairs tested in sandwich assays detects RBD2 with sub-picomolar sensitivity; and 4) two antibody pairs inhibit SARS-CoV-2 infection at low nanomolar half neutralization titers. Based on these results, we conclude that our antibodies have high potential for therapeutic and diagnostic applications. Importantly, our results indicate that readily available non immune (naïve) antibody libraries obtained from healthy donors can be used to select high-quality monoclonal antibodies, bypassing the need for blood of infected patients, and offering a widely accessible and low-cost alternative to more sophisticated and expensive antibody selection approaches (e.g. single B cell analysis and natural evolution in humanized mice).


Subject(s)
Antibodies, Viral , COVID-19 , Single-Chain Antibodies , Antibodies, Neutralizing , COVID-19/immunology , Epitopes , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
11.
Infect Dis Ther ; 11(2): 887-898, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1787898

ABSTRACT

INTRODUCTION: While guidelines stronglyrecommend dexamethasone in critical COVID-19, the optimal threshold to initiate corticosteroids in non-critically ill patients with COVID-19 remains unclear. Using data from a state-wide COVID-19 registry, we evaluated the effectiveness of early corticosteroids for preventing clinical deterioration among non-critically ill patients hospitalized for COVID-19 and receiving non-invasive oxygen therapy. METHODS: This was a target trial using observational data from patients hospitalized for COVID-19 at 39 hospitals participating in the MI-COVID19 registry between March 16, 2020 and August 24, 2020. We studied the impact of corticosteroids initiated within 2 calendar days of hospitalization ("early steroids") versus no early steroids among non-ICU patients with laboratory-confirmed SARS-CoV2 receiving non-invasive supplemental oxygen therapy. Our primary outcome was a composite of in-hospital mortality, transfer to intensive care, and receipt of invasive mechanical ventilation. We used inverse probability of treatment weighting (IPTW) and propensity score-weighted regression to measure the association of early steroids and outcomes. RESULTS: Among 1002 patients meeting study criteria, 231 (23.1%) received early steroids. After IPTW, to balance potential confounders between the treatment groups, early steroids were not associated with a decrease in the composite outcome (aOR 1.1, 95%CI 0.8-1.6) or in any components of the primary outcome. CONCLUSION: We found no evidence that early corticosteroid therapy prevents clinical deterioration among hospitalized non-critically ill COVID-19 patients receiving non-invasive oxygen therapy. Further studies are needed to determine the optimal threshold for initiating corticosteroids in this population.

12.
Mol Cell Biochem ; 477(5): 1607-1619, 2022 May.
Article in English | MEDLINE | ID: covidwho-1777759

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in December 2019 and caused coronavirus disease 2019 (COVID-19), which causes pneumonia and severe acute respiratory distress syndrome. It is a highly infectious pathogen that promptly spread. Like other beta coronaviruses, SARS-CoV-2 encodes some non-structural proteins (NSPs), playing crucial roles in viral transcription and replication. NSPs likely have essential roles in viral pathogenesis by manipulating many cellular processes. We performed a sequence-based analysis of NSPs to get insights into their intrinsic disorders, and their functions in viral replication were annotated and discussed in detail. Here, we provide newer insights into the structurally disordered regions of SARS-CoV-2 NSPs. Our analysis reveals that the SARS-CoV-2 proteome has a chunk of the disordered region that might be responsible for increasing its virulence. In addition, mutations in these regions are presumably responsible for drug and vaccine resistance. These findings suggested that the structurally disordered regions of SARS-CoV-2 NSPs might be invulnerable in COVID-19.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2
14.
J Clin Med ; 10(23)2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1542609

ABSTRACT

Thromboprophylaxis in hospitalized patients with COVID-19 has been associated with a survival benefit and is strongly recommended. However, the optimal dose of thromboprophylaxis remains unclear. A systematic review and meta-analysis (PubMed/EMBASE) of studies comparing high (intermediate or therapeutic dose) versus standard (prophylactic dose) intensity of thrombo-prophylaxis with regard to outcome of hospitalized patients with COVID-19 was performed. Randomized and non-randomized studies that provided adjusted effect size estimates were included. Meta-analysis of 7 studies comparing intermediate versus prophylactic dose of thromboprophylaxis (2 randomized and 5 observational, n = 2009, weighted age 61 years, males 61%, ICU 53%) revealed a pooled adjusted relative risk (RR) for death at 0.56 (95% confidence intervals (CI) 0.34, 0.92) in favor of the intermediate dose. For the same comparison arms, the pooled RR for venous thromboembolism was 0.84 (95% CI 0.54, 1.31), and for major bleeding events was 1.63 (95% CI 0.79, 3.37). Meta-analysis of 17 studies comparing therapeutic versus prophylactic dose of thromboprophylaxis (2 randomized and 15 observational, n = 7776, weighted age 64 years, males 54%, ICU 21%) revealed a pooled adjusted RR for death at 0.73 (95% CI 0.47, 1.14) for the therapeutic dose. An opposite trend was observed in the unadjusted analysis of 15 observational studies (RR 1.24 (95% CI 0.88, 1.74)). For the same comparison arms, the pooled RR for venous thromboembolism was 1.13 (95% CI 0.52, 2.48), and for major bleeding events 3.32 (95% CI 2.51, 4.40). In conclusion, intermediate compared with standard prophylactic dose of thromboprophylaxis appears to be rather safe and is associated with additional survival benefit, although most data are derived from observational retrospective analyses. Randomized studies are needed to define the optimal thromboprophylaxis in hospitalized patients with COVID-19.

15.
J Clin Med ; 10(19)2021 Sep 28.
Article in English | MEDLINE | ID: covidwho-1444240

ABSTRACT

The role of immunomodulatory agents in the treatment of hospitalized patients with COVID-19 has been of increasing interest. Anakinra, an interleukin-1 inhibitor, has been shown to offer significant clinical benefits in patients with COVID-19 and hyperinflammation. An updated systematic review and meta-analysis regarding the impact of anakinra on the outcomes of hospitalized patients with COVID-19 was conducted. Studies, randomized or non-randomized with adjustment for confounders, reporting on the adjusted risk of death in patients treated with anakinra versus those not treated with anakinra were deemed eligible. A search was performed in PubMed/EMBASE databases, as well as in relevant websites, until 1 August 2021. The meta-analysis of six studies that fulfilled the inclusion criteria (n = 1553 patients with moderate to severe pneumonia, weighted age 64 years, men 66%, treated with anakinra 50%, intubated 3%) showed a pooled hazard ratio for death in patients treated with anakinra at 0.47 (95% confidence intervals 0.34, 0.65). A meta-regression analysis did not reveal any significant associations between the mean age, percentage of males, mean baseline C-reactive protein levels, mean time of administration since symptoms onset among the included studies and the hazard ratios for death. All studies were considered as low risk of bias. The current evidence, although derived mainly from observational studies, supports a beneficial role of anakinra in the treatment of selected patients with COVID-19.

16.
Front Genet ; 12: 693227, 2021.
Article in English | MEDLINE | ID: covidwho-1435985

ABSTRACT

Current therapeutic strategies and vaccines against SARS-CoV-2 are mainly focused on the Spike protein despite there are other viral proteins with important roles in COVID-19 pathogenicity. For example, ORF8 restructures vesicular trafficking in the host cell, impacts intracellular immunity through the IFN-I signaling, and growth pathways through the mitogen-activated protein kinases (MAPKs). In this mini-review, we analyze the main structural similarities of ORF8 with immunological molecules such as IL-1, contributing to the immunological deregulation observed in COVID-19. We also propose that the blockage of some effector functions of ORF8 with Rapamycin, such as the mTORC1 activation through MAPKs 40 pathway, with Rapamycin, can be a promising approach to reduce COVID-19 mortality.

17.
Int J Biol Macromol ; 187: 492-512, 2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1330854

ABSTRACT

With increasing global cases and mortality rates due to COVID-19 infection, finding effective therapeutic interventions has become a top priority. Marine resources are not explored much and to be taken into consideration for exploring antiviral potential. Chitosan (carbohydrate polymer) is one such bioactive glycan found ubiquitously in marine organisms. The presence of reactive amine/hydroxyl groups, with low toxicity/allergenicity, compels us to explore it against SARS-CoV-2. We have screened a library of chitosan derivatives by site-specific docking at not only spike protein Receptor Binding Domain (RBD) of wild type SARS-CoV-2 but also on RBD of B.1.1.7 (UK) and P.1 (Brazil) SARS-CoV-2 variants. The obtained result was very interesting and ranks N-benzyl-O-acetyl-chitosan, Imino-chitosan, Sulfated-chitosan oligosaccharides derivatives as a potent antiviral candidate due to its high binding affinity of the ligands (-6.0 to -6.6 kcal/mol) with SARS-CoV-2 spike protein RBD and they critically interacting with amino acid residues Tyr 449, Asn 501, Tyr 501, Gln 493, Gln 498 and some other site-specific residues associated with higher transmissibility and severe infection. Further ADMET analysis was done and found significant for exploration of the future therapeutic potential of these three ligands. The obtained results are highly encouraging in support for consideration and exploration in further clinical studies of these chitosan derivatives as anti-SARS-CoV-2 therapeutics.


Subject(s)
Antiviral Agents/pharmacology , Chitosan/pharmacology , Genetic Variation , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/chemistry , Binding Sites , Brazil , Chitosan/chemistry , Models, Molecular , Molecular Docking Simulation , Protein Binding , Protein Conformation/drug effects , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , United Kingdom , Virus Internalization/drug effects
18.
Bioanalysis ; 13(15): 1205-1211, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1317298

ABSTRACT

The COVID-19 pandemic challenged pharmaceutical and bioanalytical communities at large, in the development of vaccines and therapeutics as well as supporting ongoing drug development efforts. Existing processes were challenged to manage loss of staffing at facilities along with added workloads for COVID-19-related study support including conducting preclinical testing, initiating clinical trials, conducting bioanalysis and interactions with regulatory agencies, all in an ultra-rapid timeframes. A key factor of success was creative rethinking of processes and removing barriers - some of which hitherto had been considered immovable. This article describes how bioanalysis was crippled at the onset of the pandemic but how innovative and highly collaborative efforts across teams within and outside of both pharma, bioanalytical labs and regulatory agencies worked together remarkably well.


Subject(s)
Biological Assay/methods , COVID-19/epidemiology , Drug Development/methods , Humans , Pandemics , SARS-CoV-2
19.
Clin Transplant ; 35(8): e14376, 2021 08.
Article in English | MEDLINE | ID: covidwho-1247159

ABSTRACT

During the COVID-19 pandemic, there has been wide heterogeneity in the medical management of transplant recipients. We aimed to pragmatically capture immunosuppression practices globally following the early months of the pandemic. From June to September 2020, we surveyed 1267 physicians; 40.5% from 71 countries participated. Management decisions were made on a case-by-case basis by the majority (69.6%) of the programs. Overall, 76.8% performed ≥1 transplantation and many commented on avoiding high-risk transplantations. For induction, 26.5% were less likely to give T-cell depletion and 14.8% were more likely to give non-depleting agents. These practices varied by program-level factors more so than the COVID-19 burden. In patients with mild, moderate and severe COVID-19 symptoms 59.7%, 76.0%, and 79.5% decreased/stopped anti-metabolites, 23.2%, 45.4%, and 68.2% decreased/stopped calcineurin inhibitors, and 25.7%, 43.9%, and 57.7% decreased/stopped mTOR inhibitors, respectively. Also, 2.1%, 30.6%, and 46.0% increased steroids in patients with mild, moderate, and severe COVID-19 symptoms. For prevalent transplant recipients, some programs also reported decreasing/stopping steroids (1.8%), anti-metabolites (10.3%), calcineurin inhibitors (4.1%), and mTOR inhibitors (5.5%). Transplant programs changed immunosuppression practices but also avoided high-risk transplants and increased maintenance steroids. The long-term ramifications of these practices remain to be seen as programs face the aftermath of the pandemic.


Subject(s)
COVID-19 , Kidney Transplantation , Humans , Immunosuppression Therapy , Immunosuppressive Agents/therapeutic use , Pandemics , SARS-CoV-2 , Transplant Recipients
20.
3 Biotech ; 11(4): 198, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1157008

ABSTRACT

Coronavirus disease (COVID-19) pandemic is instigated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of March 13, 2021, more than 118.9 million cases were infected with COVID-19 worldwide. SARS-CoV-2 is a positive-sense single-stranded RNA beta-CoV. Most COVID-19 infected individuals recover within 1-3 weeks. Nevertheless, approximately 5% of patients develop acute respiratory distress syndrome and other systemic complications, leading to death. Structural genetic analyses of SARS-CoV-2 have shown genomic resemblances but a low evolutionary correlation to SARS-CoV-1 responsible for the 2002-2004 outbreak. The S glycoprotein is critical for cell adhesion and the entrance of the virus into the host. The process of cell entry uses the cellular receptor named angiotensin-converting enzyme 2. Recent evidence proposed that the CD147 as a SARS-CoV-2's potential receptor. The viral genome is mainly held by two non-structural proteins (NSPs), ORF1a and ORF1ab, along with structural proteins. Although NSPs are conserved among the ßCoVs, mutations in NSP2 and NSP3 may play critical roles in transmitting the virus and cell tropism. To date, no specific/targeted anti-viral treatments exist. Notably, more than 50 COVID-19 candidate vaccines in clinical trials, and a few being administered. Preventive precautions are the primary strategy to limit the viral load transmission and spread, emphasizing the urgent need for developing significant drug targets and vaccines against COVID-19. This review provides a cumulative overview of the genomic structure, transmission, phylogeny of SARS-CoV-2 from Indian clusters, treatment options, updated discoveries, and future standpoints for COVID-19. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02749-0.

SELECTION OF CITATIONS
SEARCH DETAIL